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Abstract. We calculate height-height correlation functions, near-surface density-density correlation func-
tions and the corresponding frequency integrated spectra for a heat conducting viscous fluid. We calculate
scattering cross-sections for the static and dynamic X-ray scattering experiments recently developed to
investigate the nanometer-scale structure and fluctuations of liquid interfaces. We show that the density-
density correlations make an important contribution to the scattering, even using evanescent waves, and
that they are strongly affected by the surface. We also discuss the implications for X-ray photon correlation
spectroscopy and X-ray inelastic scattering.

PACS. 61.10.-i X-ray diffraction and scattering – 68.03.-g Gas-liquid and vacuum-liquid interfaces –
68.03.Kn Dynamics (capillary waves)

1 Introduction

Although studied for more than a century [1], the struc-
ture and dynamics of liquid surfaces still attract consid-
erable interest. Surface excitations have been extensively
studied from the 1960’s using light scattering [2–9]. In
addition to acoustic waves giving rise to Brillouin scat-
tering and non-propagating Rayleigh fluctuations like in
the bulk, capillary waves, i.e. fluctuations of the interface
location itself are characteristic of liquid surfaces. The cor-
responding spectra were measured by laser light scattering
for wavevectors in the range 106 − 107 m−1 and found in
good agreement with theory. X-ray reflectivity [10] and
(static) X-ray scattering experiments [11–13] were subse-
quently applied to liquid surfaces in the late 1980’s in or-
der to investigate shorter length scales. Indeed, it proved
recently possible to evidence small deviations from the
capillary wave spectrum using these techniques [14]. These
experiments are very sensitive and the density fluctuations
within the 5 nm penetration depth of the evanescent wave
used for surface sensitivity make an important contribu-
tion to the scattering. Developing a sound basis for the
interpretation of these experiments requires the determi-
nation of the depth dependence of density fluctuations at
the interface and was the first motivation of the present
study. Another important motivation is that due to the de-
velopment of the extremely brilliant so-called third gen-
eration synchrotron sources dynamic photon correlation
spectroscopy experiments can now be performed on liquid
surfaces in the X-ray range [15], and that their interpre-
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tation will require the knowledge of all (not only capillary
but also density) surface excitation spectra.

For this purpose, we give here a derivation of the
height-height and density-density correlation functions at
the surface of a viscous, heat-conducting liquid. We follow
the method of reference [16] and we use the theory of linear
response and the fluctuation-dissipation theorem relating
the correlation in fluctuations (here height and density
fluctuations) to the response of the system to an external
perturbation. The validity of the hydrodynamic approach
is guaranteed up to wave vectors ≈ 2×109 m−1 by the in-
elastic scattering measurements of reference [17]. We pro-
ceed by determining first the displacement-displacement
linear response tensor giving the correlation between the
displacements at two different points in the liquid at two
different times [18]. Then, we briefly comment on the well-
known capillary-wave spectrum, and we discuss in more
detail the depth-dependent density fluctuation spectrum,
which, to our knowledge, was never given previously. The
scattering cross-section for X-rays is determined in a last
section.

Water at room temperature is used as an example
throughout the paper.

2 The response tensor

Let a variable (here the liquid displacement u(r; t)) of an
equilibrium system coupling to a force F(r; t) through an
interaction Hamiltonian H:

H =
∫

dr F(r; t) · u(r; t) . (1)
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Let the response of the system to the applied force being
the (ensemble) average liquid displacement at r and t:
〈u(r; t)〉.

The response function χ(r, r′; t) is the tensor de-
fined by:

〈u(r; t)〉 =
∫

dr′
∫ t

−∞
dt χ(r, r′; t− t′) · F(r′; t′). (2)

Let us define the displacement-displacement correlation
tensor C(r, r′; τ) as: Cij(r, r′; τ) = 〈ui(r; t)uj(r′; t + τ)〉,
where i, j ∈ {x, y, z}. In all what follows, we assume the
system to be homogeneous in the plane of the surface (r‖)

so that C(r, r′; τ) = C(r‖ − r′‖, z, z
′; τ). If we now define

the two-dimensional Fourier transform of the displacement
u
(
q‖; t

)
as

u
(
q‖, z; t

)
= lim
A→∞

1
A

∫
A

dr‖ u(r; τ)eiq‖·r‖ ,

we have

Cij
(
q‖, z, z′; t

)
= 〈ui(q‖, z; t)uj(−q‖, z′; 0)〉 · (3)

The fluctuation-dissipation theorem relates the correla-
tions in the system to the Fourier transform of the re-
sponse function (Ref. [19,20]):

C(r, r′; t) =
kBT

iπ

∫
dω

χ(r, r′;ω)
ω

cos(ωt) . (4)

A two dimensional Fourier transform (parallel to the plane
of the interface xy) followed by simple algebra leads to:

C
(
q‖, z, z′;ω

)
=

2kBT
ω

Im χ
(
q‖, z, z′;ω

)
(5)

where

χ
(
q‖, z, z′;ω

)
=

lim
A→∞

1
A

∫
dτ
∫
A

dr‖ χ(r,0; τ)ei(ωτ+q‖.r‖) ,

and

C
(
q‖, z, z

′, ω
)

=

lim
A→∞

1
A

∫
dτ
∫
A

dr‖ C(r,0; τ)ei(ωτ+q‖.r‖) .

Using Kramers-Kronig relations and (5), one obtains:

C
(
q‖, z, z

′; τ = 0
)

= kBT Re χ
(
q‖, z, z

′;ω = 0
)
. (6)

We will proceed by calculating the displacement in x (par-
allel to the interface) or z (perpendicular to the interface)
produced by an applied force, using the hydrodynamic
equations and the appropriate boundary conditions at the
surface. We only give a brief outline of the well known hy-
drodynamic calculations in the next two sections (a com-
plete derivation can be found in reference [21]) and con-
centrate on the new development, i.e. the derivation of
all the components of the displacement-displacement re-
sponse tensor.

2.1 The hydrodynamic equations

The viscous, heat conducting liquid we are considering
obeys the continuity equation:

∂ρ/∂t = −∇ · (ρv), (7)

Navier-Stokes equation:

ρ [(∂v/∂t) + (v · ∇)v] −∇p− η∇2v

− (ζ + 1/3η)∇(∇ · v) = 0, (8)

and the heat conductivity equation:

∂h/∂t = κ∇2T. (9)

v is the liquid velocity, p is the pressure, and ζ and η are re-
spectively the coefficients of bulk and shear viscosity, η =
1.0019× 10−3 kg m−1 s−1 and ζ = 2.1× 10−3 kg m−1 s−1

for water at room temperature [22]. h is the heat den-
sity, and κ the thermal conductivity (0.5925 W m−1 K−1

for water at room temperature). A harmonic time depen-
dence exp(−iωt) is assumed, leading to v = −iωu, where
u is the liquid displacement. The thermal excitations we
consider are small and it is permissible to linearize the
equations, writing for example the total density as ρ0 + ρ
where ρ0 is the constant equilibrium density, and ρ the
small fluctuation. After some algebra [21], and using the
thermodynamic relations,

p =
(
∂p

∂ρ

)
h

ρ+
(
∂p

∂h

)
ρ

h = ρv2
a +

1
Cv

(
∂p

∂T

)
ρ

h (10)

T =
(
∂T

∂ρ

)
h

ρ+
(
∂T

∂h

)
ρ

h =
T0

ρ0Cv

(
∂p

∂T

)
ρ

ρ+
h

Cv
(11)

T0

ρ0Cv

(
∂p

∂T

)2

ρ

= ρ0v
2
a(1− Cv/Cp), (12)

where va is the adiabatic sound velocity, one obtains:

ρ =− ρ0∇ · u (13)

− ρ0ω
2u−

[
ρ0v

2
a − iω(ζ + 4/3η)

]
∇(∇ · u)

− iωη∇×∇× u) +∇h′ = 0 (14)

− ρ0v
2
a

κ

Cp

(
Cp
Cv
− 1
)
∇2(∇ · u)

+
(

iω +
κ

Cv
∇2

)
h′ = 0 (15)

where h′ = C−1
v (∂p/∂T )ρh, and Cv and Cp are the

specific heats at constant volume and pressure. Cp =
4.184 J kg−1 K−1 for water at room temperature, and
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using the relationship Cv = Cp − (TVmolα
2)/κT , with

α = 0.2× 10−3 the coefficient of thermal expansion, Vmol

the molar volume, and κT = 4.58×10−10 Pa−1 the isother-
mal compressibility, one obtains Cv = 4.102 J kg−1 K−1

for water at room temperature.
The equation for the liquid displacement can now be

obtained by elimination of h′ between (14) and (15). For
plane waves e−iq·r,

− ρ0ω
2u +

[
ρ0v

2
a − iω(ζ + 4/3η)

+ ρ0v
2
a

κ

Cp
(Cp/Cv − 1)

q2

iω − κq2/Cv

]
× q(q · u) + iωηq× q× u = 0. (16)

The solution of this equation in the bulk leads to the
existence of two independent transverse modes (shear
waves with q · u = 0) with wavevector qt such that
q2
t = iρ0ω/η ≡ iω/γt and two different longitudinal

modes (q× u = 0) corresponding to the diffusion of
heat with q2

h = iω/γh = iωCp/κ and to damped propa-
gating acoustic waves. The wavevector qa for the acous-
tic waves is such that q2

a = ω2/(v2
a − iωγa) with γa =

(ζ + 4/3η)/ρ0 + (κ/Cp)(Cp/Cv − 1). Another useful quan-
tity is qi = ω2/(v2

i − iωγi) with v2
i = Cv/Cpv

2
a = (ρ0κT )−1

the isothermal acoustic velocity, and γi = (ζ + 4/3η)/ρ0.

2.2 Boundary conditions

The hydrodynamic equations must be solved subject to
the boundary conditions at the liquid surface z = 0 [21]:[

ρ0v
2
a − iω(ζ − 2/3η)

]
∇ · u

− 2iωη (∂uz/∂z)− h′ = γ
(
∂2uz/∂z

2
)
, (17)

− iωη [∂uz/∂x+ ∂ux/∂z] = 0, (18)

− iωη [∂uy/∂z + ∂uz/∂y] = 0, (19)

∂T/∂z = 0. (20)

The first three equations express the balance of stress at
the surface (namely the zz component of the stress tensor
is balanced by surface tension, and the xz, and yz com-
ponents of the stress tensor must be 0), and the last one
assumes negligible heat conduction through the surface.
γ is the surface tension.

Again equation (20) can be transformed using (11) and
h′ can be eliminated using equations (17, 20) to obtain
equations for the liquid displacement.

2.3 Determination of the response function

In order to obtain the Fourier transform of the response
tensor χ, we calculate the response of the fluid to a

force F(r; t):

F(r; t) =
F0

A exp
(
−iωt− iq‖ · r‖

)
× δ(z− z′) (z′ > 0).

Then, (2) leads to:

〈u (r; t)〉 =

e−iωt−iq‖·r‖ 1
A

∫
A

dr′′‖ χ(r‖, r′′‖ , z, z
′;ω)F0eiq‖.(r‖−r′′‖ ) .

(21)

and if A→∞ one obtains:

〈u (r; t)〉 = exp
(
−iωt− iq‖ · r‖

)
χ(q‖, z, z′;ω) ·F0 .

In order to calculate χzz, we assume that this applied
force F(r; t) is directed parallel to the z axis. Let the x-axis
be parallel to q‖ so that the force can be written as:

F(r, t) =
F0ẑ
A exp

(
−iωt− iq‖x

)
× δ(z − z′) .

This force couples to a liquid displacement
u(z) exp(−iωt − iq‖x) with an interaction Hamiltonian
H = u∗z(z

′)F . The solution of equations (13–15) in
presence of the force is the sum of a particular solution
obtained with the force substituted in the second hand
of (14) plus a general solution of the free equations
adjusted to meet the boundary conditions. From uz(z),
one obtains the zz component of the response function
tensor:

χzz(q‖, z, z′;ω) = 〈uz(z)〉/F0. (22)

According to reference [21]:

χzz(q‖, z, z′;ω) =
i

2ρ0Aω2

×
〈
q2
‖
qzt

eiqzt |z−z′| +
q2
i − q2

a

q2
h − q2

a

qzheiqzh|z−z′| +
q2
h − q2

i

q2
h − q2

a

qzaeiqza|z−z′|

−
{
D(+−−)

q2
‖
qzt

e−iqzt z
′ − 2Cq2

‖

[
(q2
i − q2

a)e−iqzhz
′

+(q2
h − q2

i )e−iqzaz
′
]}
× e−iqzt z

D(+ + +)

+
{

(q2
i − q2

a)C
[
2q2
‖e
−iqzt z

′
+
q2
h − q2

i

q2
h − q2

a

(q2
t − 2q2

‖)e
−iqzaz

′
]

−D(−+ +)
q2
i − q2

a

q2
h − q2

a

qzhe−iqzhz
′
}

e−iqzhz

D(+ + +)

+
{

(q2
h − q2

i )C
[
2q2
‖e
−iqzt z

′
+
q2
i − q2

a

q2
h − q2

a

(q2
t − 2q2

‖)e
−iqzhz

′
]

+D(−−+)
q2
h − q2

i

q2
h − q2

a

qzae−iqzaz
′
}

e−iqzaz

D(+ + +)

〉
, (23)
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χxz(q‖, z, z
′;ω) =

i

2ρ0Aω2
×
�
−q‖

�
−eiqzt |z−z

′| +
q2
i − q2

a

q2
h − q2

a

eiqzh|z−z
′| +

q2
h − q2

i

q2
h − q2

a

eiqza|z−z
′|
�

sgn(z − z′)

+
n
D(+−−)q‖e

−iqzt z
′
− 2Cq‖q

t
z

h
(q2
i − q2

a)e−iqzhz
′

+ (q2
h − q2

i )e−iqzaz
′io

× e−iqzt z

D(+ + +)

+

�
(q2
i − q2

a)C
q‖
qzh

�
2q2
‖e
−iqzt z

′
+
q2
h − q2

i

q2
h − q2

a

(q2
t − 2q2

‖)e
−iqzaz

′
�

+D(−+ +)
q2
i − q2

a

q2
h − q2

a

q‖e
−iqzhz

′
�

e−iqzhz

D(+ + +)

+

�
(q2
h − q2

i )C
q‖
qza

�
2q2
‖e
−iqzt z

′
+
q2
i − q2

a

q2
h − q2

a

(q2
t − 2q2

‖)e
−iqzhz

′
�

−D(−−+)
q2
h − q2

i

q2
h − q2

a

q‖e
−iqzaz

′
�

e−iqzaz

D(+ + +)

+
· (26)

χzx(q‖, z, z
′;ω) =

i

2ρ0Aω2
×
�
−q‖

�
−eiqzt |z−z

′| +
q2
i − q2

a

q2
h − q2

a

eiqzh|z−z
′| +

q2
h − q2

i

q2
h − q2

a

eiqza|z−z
′|
�

sgn(z − z′)

+

�
−D(+−−)q‖e

−iqzt z
′

+ 2Cq2
‖

�
q‖
qzh

(q2
i − q2

a)e−iqzhz
′

+
q‖
qza

(q2
h − q2

i )e−iqzaz
′
��

× e−iqzt z

D(+ + +)

−
�

(q2
i − q2

a)C

�
−2q‖q

z
t e−iqzt z

′
+
q2
h − q2

i

q2
h − q2

a

(q2
t − 2q2

‖)
q‖
qza

e−iqzaz
′
�

−D(−+ +)
q2
i − q2

a

q2
h − q2

a

q‖e
−iqzhz

′
�

e−iqzhz

D(+ + +)

−
�

(q2
h − q2

i )C

�
−2q‖q

z
t e−iqzt z

′
+
q2
i − q2

a

q2
h − q2

a

(q2
t − 2q2

‖)
q‖
qzh

e−iqzhz
′
�

+D(−−+)
q2
h − q2

i

q2
h − q2

a

q‖e
−iqzaz

′
�

e−iqzaz

D(+ + +)

+
· (27)

with

D(±±±) =
[(
q2
h − q2

i

)
qzh ±

(
q2
i − q2

a

)
qza
] (
q2
t − 2q2

‖

)2

ρ0ω
2

±
(
q2
h − q2

a

)
qzhq

z
aq

2
‖
(
4ρ0ω

2qzt ± iγq4
t

)
(24)

C = 2ρ0ω
2qzhq

z
a(q2

t − 2q2
‖). (25)

The terms in |z − z′| are bulk solutions of the hydrody-
namic equations for respectively the transerve waves, lon-
gitudinal fluctuations related to the diffusion of heat, and
longitudinal acoustic waves. The other terms include re-
flections at the surface and allow the fullfilement of the
boundary conditions.

χxz(q‖, z, z′;ω) can be deduced from χzz(q‖, z, z′;ω)
as follows. χxz(q‖, z, z′;ω) is obtained from the x displace-
ment due to the same vertical force. Let’s for example first
consider the transverse exp(iqzt |z−z′|− iq‖x) bulk wave. It
can be rewritten exp(iqzt (z−z′)sgn(z−z′)−iq‖x). Since it is
a transverse wave, q · u = 0; hence qzt sgn(z−z′)uz−q‖ux =
0, and the x displacement is obtained by multiplying the
z displacement by qzt /q‖× sgn(z− z′). Applying the same

reasoning, longitudinal bulk waves for which q× u = 0
must be multiplied by −q‖/qz × sgn(z − z′), transverse
(z+ z′) waves by −qzt /q‖, and longitudinal (z + z′) waves
by q‖/qz. Using these symmetry properties, one obtains.

See equation (26) above.
χzx(q‖, z, z′;ω) is the z displacement response to an hori-
zontal applied force, and cannot therefore be obtained us-
ing the same method. We now use the general symmetry
property χij(r, r′;ω) = χji(r′, r;ω) [19,23] which implies
χzx(q‖, z, z′;ω) = χxz(−q‖, z, z′;ω):

See equation (27) above.
We finally get χxx(q‖, z, z′;ω) by multiplying trans-

verse bulk waves −qzt /q‖ × sgn(z − z′), longitudinal bulk
waves by q‖/qz × sgn(z− z′), transverse (z+ z′) waves by
qzt /q‖, and longitudinal (z + z′) waves by −q‖/qz.

See equation (28) next page.
We now have derived all the response tensor compo-

nents we need to determine height or density correlation
functions. We start by briefly discussing the well-known
height-height correlation function.
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χxx(q‖, z, z
′;ω) =

i

2ρ0Aω2
×
*"

qzt eiqzt |z−z
′| +

q2
i − q2

a

q2
h − q2

a

q2
‖

qzh
eiqzh|z−z

′| +
q2
h − q2

i

q2
h − q2

a

q2
‖

qza
eiqza|z−z

′|

#

+

�
D(+−−)qzt e−iqzt z

′
+ 2Cq2

‖

�
qzt
qzh

(q2
i − q2

a)e−iqzhz
′

+
qzt
qza

(q2
h − q2

i )e−iqzaz
′
��

× e−iqzt z

D(+ + +)

−
�

(q2
i − q2

a)C
q‖
qzh

�
−2q‖q

z
t e−iqzt z

′
+
q2
h − q2

i

q2
h − q2

a

(q2
t − 2q2

‖)
q‖
qza

e−iqzaz
′
�

−D(−+ +)
q2
i − q2

a

q2
h − q2

a

q2
‖

qzh
e−iqzhz

′
)

e−iqzhz

D(+ + +)

−
�

(q2
h − q2

i )C
q‖
qza

�
−2q‖q

z
t e−iqzt z

′
+
q2
i − q2

a

q2
h − q2

a

(q2
t − 2q2

‖)
q‖
qzh

e−iqzhz
′
�

+D(−−+)
q2
h − q2

i

q2
h − q2

a

q2
‖

qza
e−iqzaz

′
)

e−iqzaz

D(+ + +)

+
· (28)

Czz(q‖, 0, 0;ω) =
2kBT

Aω Re

0
BBBB@

1"�
q2
h
−q2i

q2
h
−q2a

1
qza

+
q2i−q2a
q2
h
−q2a

1
qz
h

��
1−

2q2‖
q2t

�2

ρ0ω2 + q2
‖

�
4ρ0ω2qzt

q4t
+ iγ

�#
1
CCCCA , (30)

3 The surface height-height correlation
function

The surface height-height correlation function is sim-
ply the displacement-displacement correlation function for
z = z′ = 0. Using equation (23), and grouping the differ-
ent terms for z = z′ = 0, one obtains:

χzz(q‖, 0, 0;ω) =
i
A

(q2
h − q2

a)qzhq
z
aq

4
t

D(+ + +)
· (29)

The fluctuation-dissipation theorem equation (5) yields:

See equation (30) above,

which is the height-height fluctuation spectrum. This
spectrum shows two peaks in the region of capillary wave
frequency and in the region of acoustic wave frequency
(Fig. 1a). All the simulations presented in this paper are
for water at room temperature, where we used the nu-
merical values of Table 1. For small viscosities, equa-
tion (30) can be approximated in the capillary-wave region
as a Lorentzian with half-width at half-maximum 2ηq2

‖/ρ0,
which is the damping term for capillary waves [16]. The
other peak corresponds to bulk acoustic waves propa-
gating parallel to the surface. Its dispersion relation is
ω = vaq, whereas the dispersion relation of capillary waves
is ω2 = γ/ρ0q

3. We note in Figure 1a that there is no peak
in the capillary waves spectrum for q‖ > 108 m−1 and in
the acoustic wave spectrum at 109 m−1. This means that
capillary waves are overdamped for q‖ > 108 m−1 and that
acoustic waves are overdamped at 109 m−1. This will also

1e-44

1e-40

1e-36

1e-32

1e+07 1e+09 1e+11 1e+13

C
ρρ

(q
;ω

)

ω (Hz)

1e-52

1e-48

1e-44

1e-40

C
zz

(q
||,

0,
0;

ω
)

 

q||=106 m-1

q||=107 m-1

q||=108 m-1

q||=109 m-1

(b)

(a)

Fig. 1. (a) Capillary wave spectra for q‖ = 106 m−1, 107 m−1,
108 m−1, and 109 m−1 respectively. Note the capillary wave
peak and the higher frequency surface acoustic wave peak.
Capillary waves are overdamped for q‖ > 108 m−1 and acous-
tic waves at 109 m−1. The area under the curve decreases
as kBT/γq‖

2. (b) Bulk density fluctuation spectra for q =
106 m−1, 107 m−1, 108 m−1, and 109 m−1 respectively. Note
the zero-frequency peak associated with thermal diffusion and
the propagating acoustic wave peak.
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Table 1. Numerical values of the thermodynamical and hydrodynamical parameters of water at room temperature used for the
simulations presented in this paper.

ρ0 γ η ζ κ va Cp Cv

kg m−3 N/m kg m−1 s−1 kg m−1 s−1 W m−1 K−1 m s−1 J m−3 K−1 J m−3 K−1

103 72.8× 10−3 1.0019 × 10−3 2.1× 10−3 0.5925 1.482 × 103 4.184 × 106 4.102 × 106

appear in Figure 3 below, where the oscillatory behaviour
at wave-vectors smaller than 108 m−1 and the damping
at 108 m−1 are explicitly shown. The damping constant
for overdamped waves, γq‖/η, can again be obtained by
approximating equation (30) [16].

The question of the contribution of overdamped cap-
illary waves to the surface roughness has been recently
addressed [24]. The answer given to this question by the
fluctuation-dissipation theorem is unambiguous: Substi-
tuting equation (29) in equation (6) and going to the limit
ω → 0, one obtains the integrated spectrum,〈

|uz
(
q‖, 0, 0; t = 0

)
|2
〉

=
kBT

Aγq2
‖
· (31)

Equation (29) gives the integrated spectrum whatever
the viscosity or even the nature of the fluctuations (non-
propagating, capillary or acoustic). In other words, at
equilibrium, only the free energy cost of deforming the sur-
face which is given by the increase in area multiplied by
surface tension is important in determining the integrated
height-height correlations, as expected.

4 The near-surface density-density correlation
function

4.1 The response function

The linear response function for density fluctuations is
obtained by derivation of the displacement-displacement
response tensor.

Let us define the potential V (r, t) such that F(r, t) =
−∇V (r, t). Then, using ρ = −ρ0∇.u (13), and integrating
by parts, equation (1) leads to:

H =
∫

F(r; t).u(r; t) dr = −
∫
∇V (r; t).u(r; t) dr

=
1
ρ0

∫
ρ(r; t)V (r; t) dr

which shows that V (r; t) is the potential coupled with den-
sity, and the density response function χρρ(r, r′; t− t′) can
be defined as

〈ρ(r; t)〉 =
∫

dr′
∫ t

−∞
dt χρρ(r, r′; t− t′)V (r′; t′). (32)

Using again (13), we have

〈ρ(r; t)〉 = −ρ0〈∇ · u(r; t)〉

= −ρ0

∫
dr′
∫ t

−∞
dt∇ ·

[
χ(r, r′; t− t′) ·F(r′; t′)

]
,

(33)

leading after integration by parts to

〈ρ(r; t)〉 = ρ0

∫
dr′
[
∂2χxx(r, r′; t)

∂x∂x′
+
∂2χzx(r, r′; t)

∂z∂x′

+
∂2χxz(r, r′; t)

∂x∂z′
+
∂2χzz(r, r′; t)

∂z∂z′

]
V (r′; t), (34)

and the density-density response function is:

χρρ(q‖, z, z′;ω) = ρ2
0

(
∂2χxx(r, r′;ω)

∂x∂x′
+
∂2χzx(r, r′;ω)

∂z∂x′

+
∂2χxz(r, r′;ω)

∂x∂z′
+
∂2χzz(r, r′;ω)

∂z∂z′

)
· (35)

One obtains:

χρρ(q‖, z, z′;ω) =
iρ0

2ω2
×
{[

q2
i − q2

a

q2
h − q2

a

q4
h

qzh
eiqzh|z−z′|

+
q2
h − q2

i

q2
h − q2

a

q4
a

qza
eiqza|z−z′| − 2iq2

i δ(z − z′)
]

−
[
(q2
i − q2

a)C
q2
h − q2

i

q2
h − q2

a

(q2
t − 2q2

‖)
q2
hq

2
a

qzhq
z
a

e−iqzaz
′

−D(−+ +)
q2
i − q2

a

q2
h − q2

a

q4
h

qzh
e−iqzhz

′
]

e−iqzhz

D(+ + +)

−
[
(q2
h − q2

i )C
q2
i − q2

a

q2
h − q2

a

(q2
t − 2q2

‖)
q2
hq

2
a

qzhq
z
a

e−iqzhz
′

+D(−−+)
q2
h − q2

i

q2
h − q2

a

q4
a

qza
e−iqzaz

′
]

e−iqzaz

D(+ + +)

}
· (36)

As expected, transverse waves do not appear in this
density-density response function. An interesting point is
the influence of the depth dependence of the correlation
function on X-ray scattering experiments. We will discuss
this in the next section after establishing the expression of
the scattering cross-section. Before this, we briefly recall
the characteristics of the bulk density-density correlation
function.

4.2 Determination of the density-density correlation
function

The density-density correlation function is obtained from
equation (36) by applying the fluctuation dissipation the-
orem equation (5):

Cρρ(q‖, z, z′;ω) =
2kBT
ω

Imχρρ(q‖, z, z′;ω) , (37)

with Cρρ(r, r′; t) = 〈ρ(r, 0)ρ(r′, t)〉.
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The first term between square brackets in (36) which
correspond to the bulk excitations leads after Fourier
transformation (including in the vertical z-direction) and
grouping of the terms to:

Cρρ(q;ω) =
2ρ0 kBT

ω3V

q2(q2
i q

2 − q2
aq

2
h)

(q2 − q2
h)(q2 − q2

a)
· (38)

This spectrum is composed of two outer peaks associated
with propagating acoustic waves and giving rise to Bril-
louin scattering, and of a central peak associated with
thermal diffusion and giving rise to Rayleigh scatter-
ing (Fig. 1b). The ratio of the integrated contributions
(Cp/Cv)− 1 is the Landau-Placzek ratio.

The integrated spectrum can be easily calculated
using Kramers-Kronig relations equation (6):
Cρρ(q‖, z, z′; t = 0) = kBT Reχρρ(q‖, z, z′;ω = 0) . (39)

In the limit ω → 0, the only non-vanishing term in equa-
tion (36) is the third one, whose limit is ρ0/v

2
i × δ(z− z′).

From equation (39), one obtains:

Cρρ(q‖, z, z′; t = 0) =
ρ2

0 kBTκT
A δ(z − z′). (40)

Equation (40) is the well-known result that density-
density fluctuations are proportional to the isothermal
compressibility of the fluid. In the bulk,

Cρρ(q; t = 0) =
ρ2

0 kBTκT
V

, (41)

where V is the volume considered.

5 Scattering cross-section for X-rays

5.1 Scattering cross-section for X-rays
within the distorted-wave Born approximation

The interpretation of a diffraction or diffuse scattering ex-
periment generally requires the comparison of an experi-
mentally determined scattered intensity with a model cal-
culation. This is most conveniently achieved by calculating
the differential scattering cross-section dσ/dΩ which is de-
fined as the intensity scattered per unit solid angle in the
direction ksc for a unit incident flux in the direction kin.
The scattered intensity is then obtained by convoluting
dσ/dΩ with the experimental resolution function.

As long as the frequency of the electromagnetic field
is much larger than the characteristic atomic frequencies,
which is the case for the generally light atoms considered
in soft-condensed matter, the electrons can be considered
as free electrons [25], and a material can be simply char-
acterised by its electron density ρe. More precisely, for
waves with a eiωt time dependence, the optical index can
be written:

n = 1− δ − iβ; with δ =
λ2

2π
reρe, (42)

where λ is electromagnetic wave length, and
re = 2.818 × 10−15 m is the so-called classical elec-
tron radius, which is the scattering length for Thomson

scattering. In the most simple Born approximation (kine-
matic approximation) which neglects multiple scattering,
a given electron only “sees” the incident wave, and the
waves scattered by two electrons separated by a distance
r only differ by a phase factor eiq.r, where q = ksc − kin

is the wave-vector transfer. Summing over all electrons in
the medium and going to the continuous limit, we have
for the scattering cross-section:

dσ/dΩ = r2
e

∣∣∣∣∫ drρe(r)eiq·r
∣∣∣∣2 , (43)

where the electron density can be written as the convolu-
tion of the atomic or molecular density

∑
i δ(r− ri) with

the electron distribution f(r) in the atom or molecule:
ρe(r) =

∑
i

δ(r− ri)⊗ f(r). (44)

The Fourier transform of f(r) is the atomic or molecular
form factor f(q) which for small enough wave vectors is
simply equal to the number of electrons in the atom or
molecule. We will use this approximation in the following,
which allows us to simply replace ρ0 by the average elec-
tron density ρe in equations (36–41) to calculate electron
density correlations.

In fact, the Born approximation is generally not
accurate enough, and this is in particular the case for
surfaces, as can be easily seen using equation (42). Indeed,
since the refractive index of matter is (slightly) less than
1, it is straightforward to show using the Snell-Descartes
law of refraction that total external reflection occurs for
grazing angles of incidence θin ≤ θc =

√
2δ ≈ 10−3. This

phenomenon is of great help for the study of surfaces since
for θin < θc only an evanescent wave propagates below
the surface (with a penetration depth equal to a few nm),
and hence surface sensitivity is considerably enhanced.
On the other hand, scattering cross-sections are large in
the total external reflection region, multiple scattering
cannot be neglected, and the simple kinematical approach
presented above is no longer good enough. More accurate
methods are to be used, the most popular being the
distorted-wave Born approximation (DWBA). Within this
approximation, the scattering cross-section is now [26,27]:
dσ/dΩ = dσ/dΩ ref + r2

e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2
× (êin · êsc)2

〈∣∣∣∣∫ drδρe(r)eiq·r
∣∣∣∣2
〉
, (45)

where dσ/dΩref is the scattering cross section for specular
reflection from the perfect interface without fluctuations.
δρe(r) is the difference between the actual electron density
and that of the perfect dioptre. tin0,1 and tsc0,1 are the Fres-
nel transmission coefficients between the upper (0) and
lower (1) media, for respectively the angle of incidence
θin and the scattering angle in the scattering plane θsc.
The coefficient tin0,1 is an approximation of the actual field
scattered by the electron density fluctuations, and tsc0,1 de-
scribes how this field propagates to the detector. (êin ·êsc)2

is a polarisation factor not considered in equation (43) ob-
tained for scalar waves. êin is the polarisation vector of the
incident field, and êsc that of the scattered field.
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5.2 Integrated spectra

Starting from equation (45), we obtain:
dσ/dΩ = dσ/dΩ ref

+ r2
e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2

∫
dr
∫

dr′eiq‖.(r‖−r′‖)

...

〈∫ uz(r‖,0)

−∞
dz
∫ uz(r′‖,0)

−∞
dz′δρe(r‖, z)

× δρ∗e(r′‖, z′)ei(qzz−q∗zz′)

〉
· (46)

In fact, at the liquid surface, δρe can be of two differ-
ent origins: there are usual density fluctuations δρdens

calculated above, and there also are places where liquid
(resp. vapour) in the perfect dioptre has been replaced by
vapour (resp. liquid) due to interface fluctuations. After
some algebra, we obtain [27]:

dσ/dΩ = dσ/dΩ ref + r2
e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2

×
∫

dr
∫

dr′eiq‖.(r‖−r′‖)

[〈∫ uz(r‖,0)

−∞
dz
∫ uz(r′‖,0)

−∞
dz′

×δρdens(r‖, z)δρ∗dens(r
′
‖, z
′)ei(qzz−q∗zz′)

〉

+ ρ2
sub

〈∫ uz(r‖,0)

0

dz
∫ uz(r′‖,0)

0

dz′ei(qzz−q∗zz′)

〉]
, (47)

where ρsub is the average liquid bulk electron density. Ne-
glecting coupling between capillary waves and bulk fluc-
tuations (see below), which amounts to setting the upper
integration limit in the first integrals in equation (47) to
0, one can independently calculate the corresponding scat-
tering cross sections.

For Gaussian fluctuations the last integral in equa-
tion (47) is equal to exp(1/2

〈
[uz(r‖, 0)− uz(r′‖, 0)]2

〉
)/∣∣q2

z

∣∣ which can be easily calculated using equation (31).
The capillary wave scattering cross-section can be written
to a good approximation [12,28,29] as:

dσ/dΩ = Ar2
eρ

2
∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2

× kBT

γq2
‖

(
q‖
qmax

)(kBT/2πγ)q2z

, (48)

where A is the illuminated area, qmin =
√
∆ρg/γ is the

minimum wave vector in the capillary wave spectrum, and
qmax is the largest one, on the order 2π/ molecular size.

For density fluctuations,

dσ/dΩ =Ar2
e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2

×
∫ 0

−∞
dz
∫ 0

−∞
dz′eiqz,subze−iq∗z,subz

′

×
∫

dr‖Cρρ(r‖,0, z, z′; t = 0)eiq‖.r‖ , (49)

where qz,sub is the normal component of the wave-vector
transfer in the liquid. The integration using equation (40)
yields:

dσ/dΩ = Ar2
e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin · êsc)2ρ2
sub

kBT κT
2 Im(qz,sub)

·

(50)

2Im(qz,sub) is the effective penetration length in the liquid.
Quite surprisingly, the result is exactly what one would
obtain using the bulk spectrum. It will however be shown
in the next section that the frequency dependence of the
spectra critically depends on the depth.

Finally, for a liquid, the total scattering due to surface
and bulk fluctuations is:

dσ/dΩ = Aρ2
subr

2
e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2

×
[
kBT

γq2
‖

(
q‖
qmax

)(kBT/2πγ)q2z

+
kBT κT

2Im(qz,sub)

]
· (51)

We now come back to the coupling between density
fluctuations and capillary waves. In order to estimate its
contribution to the scattering, we consider the q com-
ponent of the thermally induced capillary spectrum on
a liquid surface of area L × L. Its average amplitude
given by equation (31) is ζ =

√
kBT/γ/(q‖L). Half a

sinusoidal period of the wave above the reference plane
of the non-fluctuating interface contains on average N
molecules. The ratio of the scattering cross-section due to
fluctuations δN in this number of molecules to the capil-
lary cross-section is 〈δN2〉/N2 according to equation (43),
and can be calculated using equation (41) which yields
〈δN2〉/N2 = kBTκT/V ≈ q2

√
γkBTκT since V ≈ Lζ/q‖.

Since the capillary wave scattering cross section is pro-
portional to ρ2L2kBT/(γq2

‖) and the density fluctuations
cross section is proportional to ρ2L2kBTκT/(2Im(qz)), the
ratio of the intensity scattered by density fluctuations in
the capillary wave disturbed region to the intensity scat-
tered by density fluctuations within the penetration depth
is 2 Im(qz)

√
kBT/γ ≈ 0.05 for an effective penetration

length of 5 nm, and is therefore negligible.
The X-ray intensity scattered by the air-water inter-

face is displayed in Figure 2. Equation (51) is in good
agreement with the experimental data for horizontal wave-
vector transfer components q‖ smaller than 109 m−1. The
disagreement for larger wave vectors is due to the effect of
long range forces and is discussed in reference [14]. As ex-
pected the scattering is dominated by density fluctuations
for penetration lengths in the µm range and by surface
fluctuations for a penetration length of 6 nm and not too
large wave vector transfers. For this penetration length
density and surface fluctuations make an equivalent con-
tribution to the scattering cross-section for q‖ ≈ 109 m−1

due to the ∝ q−2
‖ decrease of the surface contribution.
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Fig. 2. Scattering at the air-water interface according to ref-
erence [14]. (a) Measurements in the plane of incidence (cir-
cles) and calculation using equation (48) (line). The data have
been divided by q‖ to give curves proportional to the scattering
cross-section. (b) Scans in the horizontal plane using a verti-
cally mounted PSD (signal integrated between θsc = 10 mrad
and 0.1 rad). The experimental signal has been multiplied by
q‖ in order to compensate for resolution effects and to obtain
curves proportional to the scattering cross-section. Two values
of the grazing angle of incidence are shown: θin = 4.61 mrad
(1/ (2 Im qz,sub) ' 10 µm) and θin = 2.01 mrad (1/ (2 Im qz) '
6 nm). The continuous grey lines are the result of calcula-
tions using equation (51), split into capillary-wave contribution
(grey long-dashed line, equation (48) and acoustic-wave contri-
bution (grey short-dashed line, equation (50). The continuous
black line has been calculated using a scale-dependent surface
energy γ(q‖) given by a recent density functional theory [35].
There is no adjustable parameter in any of those calculations.
Note the peak at q‖ ≈ 2 × 1010 m−1 giving the short-range
structure of nearest neighbours in water. Equation (51) fails
for q‖ > 109 m−1 where the scale-dependent surface energy
must be taken into account.

5.3 X-ray photon correlation spectroscopy

The correlation functions we have determined allow us to
calculate the time response of the system. Interface dy-
namics has been widely studied in the micron range using
laser light scattering and the interest is now focused on
smaller length scales which can in principle be investi-
gated using X-rays. The quantity measured in an X-ray
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Fig. 3. (a) Surface contribution to g1(q, τ ) for q‖ = 106, 107

and 108 m−1: g1(q, τ ) = Czz(q, 0, 0; τ )/Czz(q, 0, 0; 0). (b) Den-
sity contribution to g1(q, τ ) for q‖ = 106, 107 and 108 m−1:
g1(q, τ ) = S(q; τ )/S(q; 0).

photon correlation spectroscopy experiment is [15]

g2(q, τ) =
〈I(t)I(t+ τ)〉
〈I(t)2〉 · (52)

For Gaussian fluctuations like the height and density fluc-
tuations we have [30,31],

g2(q, τ) = 1 + |g1(q, τ)|2, (53)

where

g1(q, τ) =
〈E(t)E(t+ τ)〉
〈E(t)2〉 · (54)

Apart from possible transverse coherence problems [32],
equations (45, 49) remain valid, except the correlation
functions have now to be calculated for two different times
(we need to know the correlations between fluctuations at
different points and times). One obtains

See equation (55) next page.

Considering only small qz values and developing the ex-
ponential, we have:

See equation (56) next page.

We now discuss the behavior of g1 by examining first the
surface and density contributions independently. The sur-
face g1 is plotted in Figure 3a for q‖ = 106, 107, and
108 m−1. One can clearly see that the capillary waves are
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g1(q, τ ) =

R
dreiq‖·r‖

h
ρ2
sub
q2z

e−
1
2 q

2
z〈(uz(r‖,0,τ)−uz(0,0,0))2〉 +

R 0

−∞ dz
R 0

−∞ dz′ eiqz,subze−iq∗z,subz
′
Cρρ(q‖, z, z

′; τ )
i

R
dr‖e

iq‖·r‖
h
ρ2
sub
q2z

e−
1
2 q

2
z〈(uz(r‖,0,0)−uz(0,0,0))2〉 +

R 0

−∞ dz
R 0

−∞ dz′ eiqz,subze−iq∗
z,subz

′
Cρρ(q‖, z, z′; 0)

i · (55)

g1(q‖, τ ) =

R
dr‖e

iq‖·r‖
h
ρ2

sub〈uz(r‖, 0, τ )uz(0, 0, 0)〉+
R 0

−∞ dz
R 0

−∞ dz′ eiqz,subze−iq∗z,subz
′
Cρρ(q‖, z, z

′; τ )
i

R
dr‖e

iq‖·r‖
h
ρ2

sub〈uz(r‖, 0, 0)uz(0, 0, 0)〉+
R 0

−∞ dz
R 0

−∞ dz′ eiqz,subze
−iq∗

z,subz
′
Cρρ(q‖, z, z′; 0)

i · (56)

propagating for q‖ = 106 m−1, but that they are damped
for q‖ = 108 m−1.

In contrast to the surface contribution, the density
fluctuations contribution (Fig. 3b) does not change very
much with the wave vector. This is quite surprising since
the acoustic frequencies are quite different for those wave
vectors. In order to investigate this point in more detail,
we consider

S(q;ω) =
∫ 0

−∞
dz
∫ 0

−∞
dz′

× eiqz,subze−iq∗z,subz
′
Cρρ(q‖, z, z′;ω) (57)

which is the time Fourier transform of the density fluctua-
tion contribution to g1. S(q;ω) is plotted in Figure 4a for
different wavevectors for a penetration depth of 3.1 nm
corresponding to standard grazing-incidence experiments.
As we can see, there is no peak at the acoustic wave fre-
quency, but a maximum at higher frequencies, which does
not seem to depend on the wave vector. The shift from
this near-surface behavior to the bulk behavior upon in-
creasing of the penetration depth is displayed in Figure 4b.
In order to understand the absence of peak at the acous-
tic wave frequency, the contribution of the bulk acoustic
wave contribution (that in qza|z − z′| in Eq. (36)), of the
surface acoustic wave contribution (that in qza(z + z′) in
Eq. (36)), their sum and the total S(q;ω) have been plot-
ted together in Figure 4c. It appears that the spectrum
in this frequency range is mainly determined by acous-
tic waves as expected, but that the peak is suppressed by
interferences at the surface.

In fact, both the height and density fluctuations con-
tribute to the scattering (Fig. 5a). As expected, sur-
face fluctuations dominate for wave vectors smaller than
109 m−1, but this is no longer the case for larger wave
vectors. The response function is then determined by a
mixing of surface and density fluctuations (Fig. 5b).

We finally briefly examine the possibility of using in-
elastic X-ray scattering to probe the short scale dynamics
of liquid surfaces. This technique has been recently devel-
oped as a tool to study fast small-scale dynamics in liquids
and solids with energy resolution in the meV range, and
has been in particular successfully applied to the investiga-
tion of high frequency dynamics of liquid water [17,33,34].
These experiments have in particular shown that hydro-
dynamics models were valid up to wave vectors as large
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Fig. 4. (a) Surface density correlation function integrated
over 3.1 nm corresponding to the effective penetration depth
in a standard grazing incidence X-ray scattering experiment
for q‖ = 106 m−1, 107 m−1, 108 m−1, and 109 m−1 respec-
tively. There is no peak at the acoustic wave frequency, but a
maximum at higher frequencies. (b) Surface density correlation
function integrated over 3.1 nm, 8.7 nm, 27.1 nm and 85.5 nm
respectively for an in-plane wave vector q‖ = 106 m−1. Note
how the acoustic wave peak is restored with increasing penetra-
tion depth. (c) Surface density correlation function integrated
over 3.1 nm, for a wave vector q‖ = 106 m−1. Bulk acoustic
wave contribution, surface acoustic wave contribution, sum of
them, and total S(q, ω). Interferences at the surface suppress
the peak at the acoustic wave frequency.
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Fig. 5. (a) g2(q, τ ) for q‖ = 106 m−1. g2 only depends on
surface properties since bulk contribution is perfectly negligi-
ble. (b) g2(q, τ ) for q‖ = 2× 109 m−1: bulk contribution is no
longer negligible.

as 2×109 m−1, supporting the validity of our calculations
down to the nanometer scale. The scattering cross-section
for inelastic scattering is:

d2σ

dΩdω
= r2

e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2

×
〈∣∣∣∣∫ drdr′δρe(r, τ)δρe(r′, 0)eiq.(r−r′)eiωτ

∣∣∣∣2
〉
, (58)

leading in our case to:

d2σ

dΩdω
= r2

e

∣∣tin0,1∣∣2 ∣∣tsc0,1∣∣2 (êin.êsc)2
[
ρ2

subCzz(q‖, 0, ω)

+
∫ 0

−∞
dz
∫ 0

−∞
dz′ eiqz,subze−iq∗z,subz

′
Cρρ(q‖, z, z′;ω)

]
,

(59)

where the first term is the height fluctuation contribu-
tion and the second term the density fluctuation contri-
bution. Density fluctuations have been measured in the
bulk. We can use equation (59) to evaluate their con-
tribution at the surface which should be in the ratio of
the scattering volume heights which are equal to the pen-
etration length in the surface case and to the entrance
slit height in the bulk experiment. This ratio is equal to
(1/2Imqz)/100 µm ≈ 10−4 and such experiments would
therefore be extremely difficult. On the other hand, the

detection of capillary waves should be limited by the en-
ergy resolution.

Concluding remarks

Our calculations provide a firm basis for X-ray scattering
experiments of the liquid surface. They show in particular
that density fluctuations cannot be neglected in general.
We have also derived complete expressions for the inter-
pretation of X-ray photon correlation spectroscopy exper-
iments for the first time. Such experiments should be the
best way to investigate the short-scale dynamics of liquid
surfaces, and more experiments are now needed to improve
our understanding. In particular, the correlation functions
we obtain are far from the simple exponentials assumed in
reference [15]. In any quantitative analysis, it will also be
important to consider that real sources are only partially
coherent.
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